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Proteomic approaches to
oxidative protein modifications
implicated in the mechanism
of aging

Tosifusa Toda, Megumi Nakamura, Hiraku Morisawa, Mikako Hirota,
Ryuichi Nishigaki and Yoji Yoshimi

Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan

Accumulation of oxidatively modified proteins is widely observed in aged animal tissues.
Protein carbonyls are mostly derived from lysine, arginine, proline and threonine residues
under oxidative conditions. Many groups have investigated carbonylated proteins since
a convenient immunochemical procedure was established for detecting dinitrophenyl
derivatives of carbonyls and applied to proteomic research. An alternative method of
tagging with biotin or fluorescent dyes has been also introduced to proteomic analysis of
protein carbonyls. Nitrotyrosine was primarily identified as a biomarker of cellular damage
and inflammation under nitrosative stress. Nitrated proteins have been subsequently
detected in aged animal tissues and Alzheimer’s disease affected brains by Western blot-
ting, and identified by mass spectrometry. Protein s-thiolation, a mixed-derivatization of
cysteine (Cys) by conjugation of low-molecular-weight thiol compounds, is recognized as
protecting functional proteins from more serious damage. A method of biotin labeling has
been used in proteomics for tracing protein s-thiolation. Among all kinds of amino acid
residues, methionine (Met) is the most susceptible to reactive oxygen species, and Met
oxidation seems to occur in ordinary cellular circumstances because most cells contain
Met sulfoxide reductases, which might prevent serious cellular damage. In proteomic
analysis, Met sulfoxide-containing peptides are generally observed as 16-Da-high mass
peaks in peptide mass fingerprinting. A modified procedure of two-dimensional gel elec-
trophoresis, in which proteins are kept under non-oxidative conditions throughout the
procedure, is appropriate for the estimation of the Met sulfoxide level of each protein
in aged animal tissues and cells to evaluate the pathophysiological significance of Met
oxidation in the mechanism of aging. Geriatr Gerontol Int 2010; 10 (Suppl. 1): S25-S31.

Introduction

Biological aging is quite a complex process, in which
various organ and cell functions decline with the
passage of time at the late stage of the animal lifespan.
Among many theories of aging, proposed as working
hypotheses for carrying out research on mechanisms
of aging, the “free radical theory of aging” developed
by Denham Harman'? has been adopted by many
researchers as it is consistent with observations in aged
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cells and tissues. In the free radical theory, it has been
hypothesized that the decline of cell functions with
aging is a result of the accumulation of altered mol-
ecules generated by the effect of free radicals. The free
radical theory was originally only concerned with typical
free radicals, such as superoxide anion radical (-O") and
hydroxyl radical (-OH), but it has since been expanded
to encompass all reactive oxygen species (ROS). The
ROS are inevitably generated in metabolic pathways in
all cells, and some of them might play important roles in
cell signaling.>* However, excess ROS damages a wide
range of biomolecules, including DNA and functional
proteins (Fig. 1).

The pathophysiological role of ROS-induced DNA
damage had been initially discussed in the mechanism
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Figure 1 Oxidative modifications of biomolecules by
reactive oxygen species implicated in aging and age-related
diseases.

of chemical carcinogenesis.*” The implication of
oxidative DNA damage in the mechanism of aging was
proposed by Ames.*” Kaneko efal. at our institute
also observed the significant increase of 8-hydroxy-2’-
deoxyguanosine (8-OHdG), an oxidation derivative of
deoxyguanosine, in aged rat DNA at the late stage of the
lifespan.'" However, the common pathway and diver-
gence of the two distinct phenomena, that is cellular
immortalization and senescence, is still unclear.

In contrast, the apparent increase in oxidatively modi-
fied proteins has been observed in aged animal tissues
and cells, suggesting protein oxidation is involved in
the process of individual aging. Actually, proteins have
many amino acid residues that are more susceptible to
oxidative stress than deoxyguanosine in DNA (Fig. 2).

The pathophysiological meaning of variously oxidized
protein molecules has been discussed in the physiologi-
cal process of aging''""* and in the pathological process
of age-related diseases such as Alzheimer’s discase
(AD),"™ cataracts'™'® and atherosclerosis.'™'*

Carbonylatlon of protein at lysme,
arginine, proline and threonine residues

Most of the protein carbonyls observed in aged cells and
oxidatively damaged cells are derived from lysine (Lys),
arginine (Arg) and proline (Pro) as shown in Figure 2.
2-Amino-adipic semialdehyde (AAS) and g-glutamyl
semialdehyde (GGS) are the most abundant carbonyls
in aged cells. AAS might be derived from only peptidyl
Lys, whereas g-glutamyl semialdehyde (GGS) is gener-
ated from both peptidyl Arg and Pro."” Ketone forms
of carbonyls might be generated from threonine (Thr)
residues (the structure of ketone form is not shown in
Fig. 2).

After a convenient method for detecting protein
carbonyls on PVDF membrane was developed,” elec-
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Figure 2 Oxidative modifications of amino acid residues in
proteins under oxidative circumstance.

trophoretic and proteomic analyses of carbonylated
proteins have been extensively carried out by many
groups.”'=’

In their proteomic analyses, the increase of protein
carbonyls in AD brain has also been reported, however,
more careful consideration should be taken before
concluding that oxidative stress is implicated in AD,
because alternative production of protein carbonyls
through non-oxidative pathways has also been
suggested.™

Nitration of protein at tyrosine residues

Nitrated proteins are also good target of proteomic
analysis, because specific antibodies detecting 2-nitro-
tyrosine (Tyr) have been commercially available and the
nitro-Tyr-containing peptides are easily identified by
mass spectrometry as +45-Da mass shift (Fig. 2).

Since protein nitration was first found in cytochrome
¢,” the nitrosative protein modification has been
studied as an alternative pathway of ROS-induced aging
and diseases.™" Many nitrated proteins were detected
in AD brain by 2-D Western blotting and identified by
mass spectrometry. The data obtained by proteomic
approaches suggest the involvement of protein nitration
in neurodegeneration. However, implication of the
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nitrosative protein modification in physiological process
of brain aging still remains to be investigated further.**

Protein s-thiolation at cysteine residues

Protein s-thiolation is a mixed-disulfide derivatization
of cysteine (Cys) residues by the conjugation of low-
molecular-weight thiols, such as glutathione. Detection
of protein s-thiolation was first reported in cardiac cells
treated with diamide, a thiol-specific oxidant.*” Protein
s-thiolation is known to cause inactivation or activation
depending on the protein structure. Inactivation of cre-
atine kinase by s-glutathiolation suggests the implica-
tion of the Cys modification in cardiac injury occurred
under ischemic conditions.”” The similar inactivation
was observed in protein kinase C-alpha.*! In contrast, it
has been suggested that the activation of the small G
protein Ras by s-glutathiolation plays an important role
in myocardial remodeling after ischemic injury.*

However, protein s-glutathiolation has been generally
recognized as a protective reaction for most proteins
from more serious irreversible oxidation, because
the glutathionyl mixed disulfide can be reversed by
the action of thioltransferase (glutaredoxin),* or in the
nicotinamide adenine dinucleotide (NADH)- and nico-
tinamaide adenine dinucleotide phosphate (NADPH)-
dependent protein reducing system.** The implication
of protein s-thiolation in the physiological aging process
and in the anti-aging defense system still remains to be
further investigated.

A thin-gel isoelectric focusing method was initially
developed for the analysis of protein s-thiolation.” The
method of isotope labeling by the incorporation of
[S¥]-glutathione has been developed for tracing in vitro
s-thiolated proteins.* Isotope labeling is the most sen-
sitive method for detecting low levels of modification,
however, the radioactive protein is not applicable to
the general procedure in proteomic identification
by mass spectrometric analysis. The non-radioactive
biotin-labeling method has been also developed for
concentrating and detecting in vitro s-cysteinylated
proteins.”” The biotin-labeled protein is suitable for
proteomic analysis by mass spectrometry, however, it is
not applicable to in vivo s-cysteinylated samples, such as
human clinical specimens.

Thus, we developed another method for detecting
free thiols and s-thiolated Cys by differential fluores-
cence labeling. By our post-labeling method, the
conjugated counterparts of s-thiolation could not be
directly detected by mass spectrometry, because mixed-
disulfide was replaced with the thiol-specific fluorescent
dyes. However, the level of s-thiolation and disulfide
bridging in human specimens under oxidative stress
could be easily quantified by 2-D gel-based fluorescence
imaging. By using this method, increased level of
s-thiolation and disulfide bridging in specific proteins
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were detected in the cerebrospinal fluid (CSF) of senile
dementia patients.

Sulfoxidation of protein at methionine
(Met) residue

Amongst the many kinds of amino acid residues, the
methyl-thio-ether group of Met is particularly suscep-
tible to ROS, and changes to the sulfoxide form of Met
(MetO) as shown in Figure 2. Sulfoxidation of Met
leads most proteins to conformational alteration, and
in some cases, loss of function. To prevent serious
consequence of Met sulphoxidation, most cells express
methionine sulfoxide reductase (MsrA), which works
to repair damaged protein by reducing MetO.**
However, a high enough level of activity of MsrA
appears to be essential for cells to survive in the pres-
ence of ROS*, and it has been confirmed that msrA
knockout mice have a significantly shorter lifespan than
controls.” MsrA activity is significantly low in AD brain
when compared with the normal control brain, suggest-
ing the involvement of Met sulfoxidation in the process
of hippocampal neurodegeneration in AD.* Further-
more, downregulation of msrA gene expression and
the decrease in enzyme activity of MsrA with aging are
observed in rat tissues.” These data suggested that
the level of oxidized protein might increase, even in the
physiological process of normal brain aging, and the
situation is much worse in AD brain. Anyway, Met
sulfoxidation might occur on almost all Met-containing
proteins under oxidative conditions in cells, however,
pathophysiological consequences might vary with site of
MetO and degree of conformational alteration in each
oxidized protein.

The proteomic method is a powerful tool for com-
prehensively analyzing alterations of proteins in both
relative abundance and post-translational modifica-
tions. However, special care should be taken to avoid
artificial Met sulphoxidation during analysis. The pro-
cedure of 2-D gel electrophoresis and MS analysis has
been optimized for determining the level of MetO in
each protein spot separated on a gel, and applied to the
analysis of protein alterations with aging in the mouse
hippocampus.™

A significant decrease in protein expression was
detected in the spots on the 2-D gel corresponding to
calmodulin (CaM), ubiquitin carboxyl-terminal esterase
L1 (UCH-L1) and nm23-M1, in contrast to the increase
in spots corresponding to molecular chaperons such as
heat-shock protein (HSP) 60 and HSP70 (Fig. 3).

The decrease in CaM expression levels might be a
result of downregulation in gene expression and/or the
increase in protein degradation. However, downregula-
tion of CaM gene expression in the hippocampus was not
detected, even in a global survey of age-related changes in
mRNA levels in the mouse hippocampus.®**¢ In contrast,
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Figure 3 2-D gel electrophoretic observation of protein
alterations in the mouse hippocampus with aging.

the loss of conformational stability of CaM by oxidation®”
and the acquisition of a high susceptibility to proteolytic
degradation on 20S proteasome® without polyubi-
quitination suggest that the decrease in the relative
abundance of CaM might be the result of increased
degradation in the aged mouse hippocampus.

The increase in MetO-levels on CaM, UCH-LA and
nm23-M1 in the aged mouse hippocampus has been
observed by matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) of
tryptic digests of these protein spots separated by 2-D
gel electrophoresis.** MetO-containing peptide appears
as a 16-Da-high mass peak on primary MS spectra, and
the real Met oxidation can be confirmed by detecting
the 64-Da “neutral loss”, that is mass deduction by
secondary MS/MS carried out in a Post-source-Decay
(PSD) mode. Thus, obtained mass spectra indicate that
the MetO level in these proteins increases in the mouse
hippocampus with aging (Fig. 4).

Furthermore, it has been also confirmed that Met144
and Met14S located in the EF-hand 4 of CaM are more
susceptible to oxidation when compared with Met36 in
the EF-hand 1. The observation suggests that the Met
sulfoxidation occurs in a site-specific manner in CaM
under oxidative stress in aged animal tissues (Fig. S).

CaM is a highly conserved Ca*-binding protein
essential for various biological functions mediated by
Ca* in a concentration-dependent manner. The reduc-
tion of CaM content in the AD brain (66% of control)
was originally found by radioimmunoassay.”” In that
study, it was also reported that the CaM extracted from
the temporal cortex of AD brain showed reduced effi-
cacy as an activator of 3’,5’-cyclic-nucleotide phos-
phodiesterase. These data suggest that the impaired
CaM function in AD brain might affect calcium homeo-
stasis and calcium-mediated signal transduction in the
process of neurodegeneration.

The decline in CaM function was already reported in
the physiological aging of the rat brain.®’ Squier et al. at
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Figure 4 Quantitative determination of the level of Met
sulfoxide in calmodulin (CaM), UCH-L1 and nm23-M1 by
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry analysis. Asterisks indicate
MetO-containing peptides.
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Figure 5 Mass spectrometric profiling of site-specific Met
sulfoxidation in calmodulin. Met144 and Met 145 in
EF-hand 4 are more preferentially oxidized than Met36 in
EF-hand 1.

the University of Kansas have carried out further analy-
ses and confirmed that Met sulfoxidation is responsible
for the age-dependent decline in the ability of CaM to
activate plasma membrane (PM) Ca-ATPase.***
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Figure 6 The highly conserved primary structure of
calmodulin, which is comprised of 4 EF-hands containing
functional Met. Met144 and Met145, located in the EF-hand
4, are preferentially oxidized in the aged mouse
hippocampus.

Both the methylthio groups of Met and the thiol
group of Cys are especially susceptible to oxidation by
all kinds of ROS compared with other amino acid resi-
dues. However, CaM has no Cys in all of its highly
conserved primary structure of 148 amino acids, though
it contains nine Mets in the mature form of the small
protein (Fig. 6).

The results of our 2-D gel-based proteomic analysis
indicate that the total amount of CaM decreases and the
level of Met-oxidized CaM increases in the mouse
hippocampus during aging. From the data of our MS
analysis, we concluded that not all of the nine Met
residues are evenly oxidized, but Met144 and Met14S
located at the Ca-binding site in the EF-hand 4 are
preferentially oxidized in the aged mouse hippocampus.

It has been known that oxidation of Met144 and
Met14S in CaM blocks CaM-dependent activation of
the plasma membrane Ca-ATPase.** We carried out
the analysis of the conformational response of native
and Met-oxidized CaM to calcium binding by using the
method of dual polarization interferometry (DPI)* to
obtain evidence for probable direct effect of Met sul-
phoxidation on the calcium-binding affinity of CaM.
The details of the DPI analysis will be reported in a
separate paper.

The present data obtained by proteomic analysis
indicated that the protein expression of CaM, UCH-L1
and nm23-M1 decrease, and the oxidized forms of
CaM, UCH-L1 and nm23-M1 increase with aging in
the mouse hippocampus. The increase in oxidation
of CaM might disturb the CaM-dependent calcium
signaling in brain function. Oxidation of UCH-L1
and nm23-M1 might also affect ubiquitin recycling
in proteasome-dependent protein degradation and
guanosine triphosphate-mediated signal transduction,
respectively, in the aged mouse hippocampus.
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